제목 [기술동향] 차세대 질병 진단 및 스크리닝 기술 관련 연구 동향
분류 성장동력산업 판매자 류지원 조회수 107
용량 1.24MB 필요한 K-데이터 3도토리
파일 이름 용량 잔여일 잔여횟수 상태 다운로드
[기술동향] 차세대 질병 진단 및 스크리닝 기술 관련 연구 동향.pdf 1.24MB - - - 다운로드
데이터날짜 : 2022-03-28 
출처 : 융합연구정책센터 
페이지 수 : 24 

< 목 차 >

 

Ⅰ 서론

Ⅱ 질병 진단 및 스크리닝 기술

Ⅲ 결론

 


 

 

1. 헬스케어 분야의 인공지능(AI, Artificial Intelligence) 기술 현대 인공지능(AI) 혁명은 한 연구 대회에서 시작되었다. 2012년은 연례 ImageNet 대회의 3번째 해였는데, 이 대회에 참가한 팀은 동물에서 풍경, 사람에 이르기까지 1,000개의 물체를 인식하는 컴퓨터 비전 시스템을 구축해야 했다. 처음 2년 동안 최고의 성적을 낸 팀은 75%의 정확도에도 도달하지 못했지만, 세 번째 실험에서는 교수와 그의 제자 3명으로 구성된 팀이 갑자기 이 성능을 넘어섰다. 무려 10.8% 포인트라는 압도적인 격차로 경쟁에서 승리했으며 그 교수는 제프리 힌턴(Geoffrey Hinton)이었고 그들이 사용한 기술을 딥 러닝(Deep Learning)이라고 했다(Krizhevsky, 2012). ImageNet 대회 4년차에는 거의 모든 팀이 딥 러닝을 사용하여 정확도를 향상시켰고 얼마 지나지 않아 딥 러닝은 이미지 인식을 넘어 자연어처리(NLP, Natural, Language Processing), 음성인식(Speech Recognition) 기술, 로봇 등 광범위한 산업 분야에도 적용되었다. 의료 분야에서 AI의 사용 사례는 1990년대 후반으로 거슬러 올라간다. 이 때 처음으로 당시로서는 생소하였던 기계 학습(Machine Learning) 기술을 이용하여 의사가 의료 이미지에서 암을 식별하기 용이하도록 사용되었다. 시작은 미약했지만 AI와 헬스케어 기술의 결합은 앞으로 전 세계적으로 건강 결과를 개선할 수 있는 엄청난 잠재력을 가지고 있다. 예를 들어, 환자 데이터를 집계 및 평가하여 위험 분석을 개선할 수 있고, 방사선 영상 솔루션은 전문가가 이미지를 보다 효율적이고 효과적으로 평가하도록 지원할 수 있으며, 기계 학습 플랫폼을 이용하여 자동화된 일정 기능 및 챗봇을 통해 건강관리의 단위 비용을 절감할 수 있다. 또한 환자 치료에 시간을 할애할 수 있도록 전문가를 추천할 수 있다. 이러한 AI 건강 애플리케이션 중 일부는 COVID-19에 대한 대응으로 가속화되었다. AI는 약물 및 백신 연구, 환자 분류부터 물류 추적 및 감시 시스템, 중증 COVID-19 환자 예측에 이르기까지 광범위하게 적용되고 있다. 2 0 2 2 M a r c h v o l . 8 n o . 3 5 2. 헬스케어 분야의 디지털 전환(Digital Transformation) AI 기술과 IT 기술의 발달로 ‘파괴적인 혁신’을 가지고 오는 디지털 전환(Digital Transformation)이 다양한 분야에서 진행되고 있다. 특히, COVID-19 유행과 더불어 의료, 헬스케어 분야는 전 세계적으로 급진적인 변화와 혼란을 겪고 있다. 이러한 변화는 의료, 헬스케어 분야의 패러다임 변화를 가속화하며 다음과 같은 특징을 가진다(Kharbanda & Imran, 2020). 그림 1. 헬스케어 패러다임 변화 * 출처 : Kharbanda & Imran(2020) - 인구 건강관리 : 환자는 더 이상 개별 사례로 취급되지 않으며, 디지털 정보 교환을 통해 건강 데이터는 지역 사회, 국가 및 지역 수준에서 집계되고 있다. 건강 생태계의 모든 이해 관계자는 서로 다른 소스의 건강 관련 필수 정보에 접근(access)하고 공유하는 메커니즘을 만들고 있어 주요 의료 동향을 더 빠르고 정확하게 감지할 수 있다. - 환자 중심성 : 특정 요구, 선호도 및 환자 가치에 맞게 치료 제공이 맞춤화되고 있다. 의료 서비스 제공자는 보다 개인화된 치료를 구축하는 데 중점을 둔다. - 예방 및 평생 관리 : 의료 지식의 발전과 정보 보급 채널의 다양화는 환자의 인식을 변화시키고 건강관리를 위한 환자의 참여를 증가시키고 있다. 의료 서비스 제공자와 규제 기관은 사람들이 건강관리에 대해 보다 능동적인 접근 방식을 취하도록 장려하기 위해 의학적 상태, 증상 및 치료 옵션에 대한 지식을 전달하는 데에 중점을 두고 있다



※ 본 서비스에서 제공되는 각 저작물의 저작권은 자료제공사에 있으며 각 저작물의 견해와 DATA 365와는 견해가 다를 수 있습니다.

List of Articles
번호 분류 제목 K-데이터 판매자
K데이터 무통장 입금을 통한 충전 방법
3408 성장동력산업 [시장동향] 전일제 환산 취업자로 본 고용의 변화 3도토리 나혜선
3407 성장동력산업 [국가별 동향] 우크라이나 위기와 러·미 갈등:주요 쟁점과 시사점 1도토리 나혜선
3406 성장동력산업 [국가별 동향] 스리랑카 경제위기의 주요 원인과 전망 1도토리 나혜선
3405 성장동력산업 [정책분석] 중국 개인정보 보호법의 주요 내용과 전망 1도토리 국준아
3404 성장동력산업 [시장분석] 유럽 반도체 법안의 주요 내용 및 전망 1도토리 국준아
3403 성장동력산업 [국가별 동향] 인도 5개 주 의회 선거결과와 시사점 1도토리 국준아
3402 성장동력산업 [국가별 동향] 2021년 북중 무역 평가: 경제난과 무역 정상화 1도토리 국준아
3401 성장동력산업 [정책분석] 우크라이나 사태와 대러 제재의 경제적 영향 7도토리 국준아
3400 성장동력산업 [정책분석] 2022년 양회를 통해 본 중국의 경제정책 방향과 시사점 3도토리 국준아
3399 성장동력산업 [정책분석] 한미 FTA 발효 10년 성과와 시사점 3도토리 국준아
3398 성장동력산업 [산업분석] 인도 신재생에너지 시장 기회 및 진출 전략 3도토리 나혜선
3397 성장동력산업 [산업분석] 소상공인의 코로나19 위기 극복을 위한 디지털 전환 1도토리 나혜선
3396 성장동력산업 [산업분석] 화상통화를 활용한 비대면 보험 모집 해외 사례와 시사점 1도토리 나혜선
3395 성장동력산업 [산업분석] 메타버스 新인류, 디지털 휴먼 3도토리 나혜선
3394 성장동력산업 [정책분석] 지역혁신형 규제샌드박스 제도의 실효성 제고 방안 7도토리 정한솔
3393 성장동력산업 [기술동향] 2022년 클라우드컴퓨팅 트렌드 3도토리 정한솔
3392 성장동력산업 [기술분석] 이동통신 위치기반 서비스 동향 및 정밀 측위기술 소개 1도토리 정한솔
3391 성장동력산업 [기업분석] 2021 초연결 지능화시대 DNA 분야 혁신기업 7도토리 정한솔
3390 성장동력산업 [산업분석] 스마트농축수산의 정의와 현황 1도토리 황세영
3389 성장동력산업 [산업분석] 기술혁신형 중소기업의 디지털전환 실태 및 시사점 3도토리 황세영